

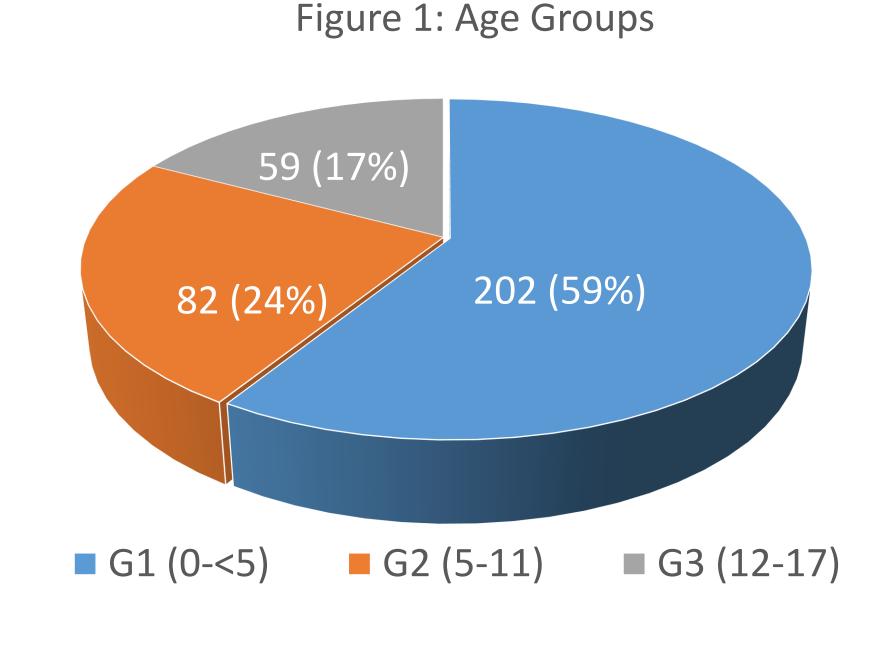
Pediatric Emergency Department Visits for COVID-19 During the Omicron Wave in

Two Urban Multiethnic Community Hospitals

Lochana KC MBBS¹, Tamana Bismillah BS², Kelly L. Cervellione MPhil², Lily Q. Lew MD¹, Won Baik-Han MD¹, Gagan Gulati MD¹ ¹Department of Pediatrics, Flushing Hospital Medical Center, Flushing, NY 11355 USA, ²Department of Clinical Research, Medisys Health Network, Jamaica, NY 11418 USA

INTRODUCTION

- World Health Organization declared novel coronavirus disease 19 (COVID-19) outbreak a global pandemic in March 2020.
- Two years into the COVID-19 pandemic, knowledge about how SARS-CoV-2 infection affects pediatric population is still lacking.
- Widespread symptomatic illness in children was uncommon and likely due to school closure, cancellation of group activities and strict masking.
- During the Omicron surge in NYC from November 2021 to February 2022, pediatric COVID-19 cases increased.
- According to New York State Department of Health statistics, 9% of children aged 5-11 and 35 % of adolescents aged 12-17 were vaccinated.
- There are no studies on the incidence and presentation of children and adolescents aged 0-17 years who tested positive for COVID-19 during the Omicron surge.


OBJECTIVE

To explore reasons for visiting pediatric emergency department in those who tested positive for COVID-19 with and without vaccine during Omicron wave.

METHODS

- **Design**: Retrospective chart review
- **Setting**: Flushing Hospital Medical Center (FHMC) and Jamaica Hospital Medical Center (JHMC)
- **IRB**: Approved by FHMC and JHMC
- Time Frame: November 2021-February 2022
- Inclusion criteria: Children and adolescents aged 0-18 years tested for COVID-19 between November 1, 2021 and February 28, 2022
- Exclusion criteria: Children and adolescents not tested for COVID-19
- Statistical analyses: Descriptive statistics using percentages

RESULTS

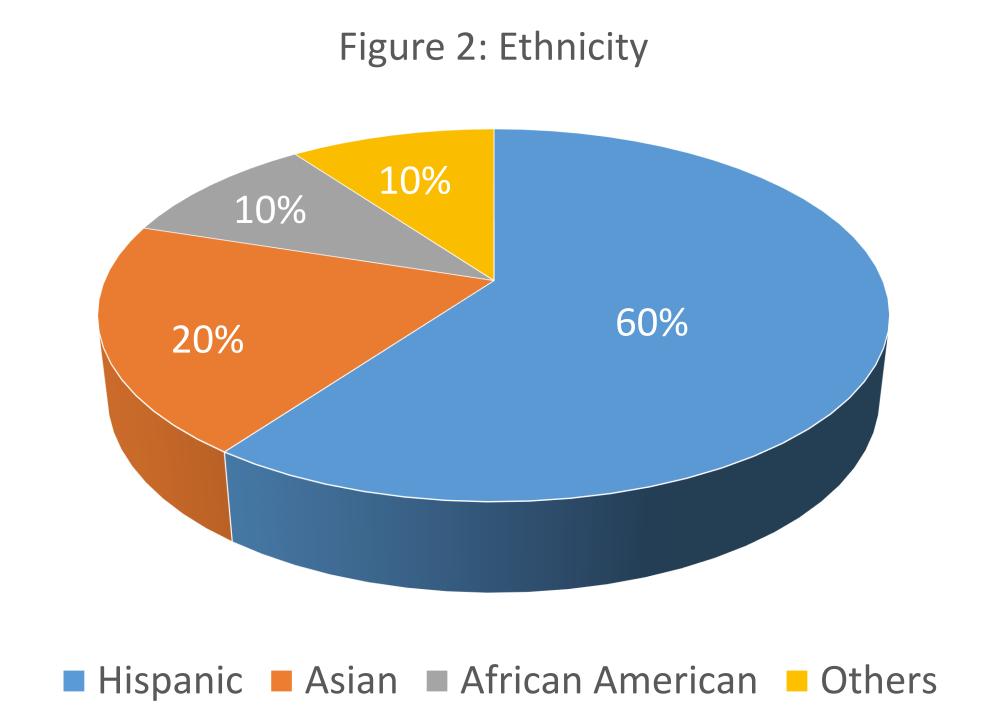


Table 1. Clinical characteristics of the sample.

	Overall (%)	0-<5 years n (%)	5-<12 years n (%)	12-18 years n (%)
Vaccine Status	28 (9)	Not eligible	18 (24)	10 (17)
Hospitalization	148 (44)	120 (59)	18 (24)	10 (17)
Presenting diagnosis				
COVID-19	140 (42)	54 (29)	47 (62)	39 (77)
Respiratory (total)				
Upper respiratory infection	89 (26)	64 (35)	20 (26)	5 (10)
Bronchiolitis	4 (1)	4 (2)	0	0
Croup	17 (5)	15 (8)	2 (3)	0
Pneumonia	3 (<1)	3 (2)	0	0
Asthma	4(1)	4(2)	0	0
Gastrointestinal				
Gastroenteritis	11 (3)	8 (4)	2 (3)	1 (2)
Neurological				
Convulsion	4 (1)	3 (2)	1 (1)	0
Genitourinary				
Urinary tract infection	2 (<1)	2 (1)	0	0
Hematuria	1 (<1)	1 (<1)	0	0
Surgical				
Inguinal hernia	1 (<1)	1 (<1)	0	0
Appendicitis	1 (<1)	0	0	1 (2)
Other				
Otitis	8 (2)	6 (3)	1 (1)	1 (2)
Lymphadenopathy	2 (<1)	1 (<1)	0	1 (2)
Fever	8 (2)	7 (4)	1 (1)	0

RESULTS

- Charts reviewed: 311
- **Age groups: G1** 0-<5 years: 59%

G2 5-<12 years: 24%

G3 12-<18 years: 17%, Figure 1

- Ethnicity: Hispanics 60%, Asians 20%, African American 10%, Figure 2
- Hospitalization:

Majority of patients requiring admission were from G1 (74%)

- Most common diagnosis, Table 1
 - In all groups, majority of patients presented for symptoms of viral infection (G1 >80%, G2 > 90%, G3 >90%)
 - Symptoms of upper respiratory infection were most frequent in all groups (>80%)

CONCLUSIONS

- Majority of the patients seen and tested positive for COVID-19 was in the unvaccinated G1 group.
- Hispanic and Asian were the predominant ethnicity.
- Higher number of unvaccinated in G2 may be due to the later authorization for vaccine use.
- Upper respiratory infection symptoms were the most frequent complaint of Omicron variant.
- Of those hospitalized, the greatest number was in the unvaccinated.
- We report descriptive data from Omicron surge in NYC among pediatric population.

ACKNOWLEDGEMENT

Andrew Miele, MS

REFERENCES

- 1. WHO Director-General's opening remarks at the media briefing on COVID-19 March 2020[Article]
- 2. Sharma A, Tiwari S. Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2): a global pandemic and treatment strategies. Int K Antimicrob Agents: 2020;56;2 (PMID: 32534188) doi.org/10.1016/j.ijantimicag.2020.106054
- 3. Health.nyc.gov/statistics
- 4. World Health Organization. Considering the impact of COVID-19 on children https://www.euro.who.int/en/health-topics/Life-stages/child-and-adolescenthealth/covid-19-and-children. opens in new tab
- 5. World Health Organization COVID-19 disease in children and adolescents: scientific brief, September 29,
- 2021https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief- Children_and_adolescents-2021.
- 6. Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanism underlying the age-related difference in the severity of SARS-CoV-2 infections. Arch Dis Child 2020 December 1 (Epub head of print). Pub

Chest Annual Meeting, Nashville, Tennessee, October 18, 2022